Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study
نویسندگان
چکیده
Using molecular dynamics simulations, we have predicted the thermal conductivity of Bi2Te3 nanowires with diameters ranging from 3 to 30 nm with both smooth and rough surfaces. It is found that when the nanowire diameter decreases to the molecular scale (below 10 nm, or the so-called “quantum wire”), the thermal conductivity shows significant reduction as compared to bulk value. On the other hand, the thermal conductivity for the 30-nm-diam nanowire only shows less than 20% reduction, in agreement with recent experimental data. Also, the thermal conductivity of nanowires shows a weaker temperature dependence than the typical T −1 trend, consistent with experimental observations. This is attributed to the strong boundary scattering of phonons. An analytical model is developed to interpret the molecular dynamics data, and the model suggests that phonon softening in thin nanowires and strong phonon scattering on the rough surface are the two major mechanisms leading to the thermal conductivity reduction. Our results indicate that Bi2Te3 nanowires need to be in the molecular scale (diameter below 10 nm) in order to achieve better ZT than the bulk phase.
منابع مشابه
Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons
: We present molecular dynamics simulation of phonon thermal conductivity of semiconductor nanoribbons with an account for phonon quantum statistics. In our semiquantum molecular dynamics simulation, dynamics of the system is described with the use of classical Newtonian equations of motion where the effect of phonon quantum statistics is introduced through random Langevin-like forces with a sp...
متن کاملMolecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials
Two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride, and the potentials are used in molecular dynamics simulations to predict the thermal conductivity. The densityfunctional theory with local-density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. T...
متن کاملCoupled vibrational modes in multiple-filled skutterudites and the effects on lattice thermal conductivity reduction
Related Articles Nanowire-filled polymer composites with ultrahigh thermal conductivity Appl. Phys. Lett. 102, 093117 (2013) Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations J. Chem. Phys. 138, 084708 (2013) Cross-plane thermal properties of transition metal dichalcogenides Appl. Phys. Lett. 102, 081604 (2013) Thermoelectric properties of ...
متن کاملThermal conduction inhomogeneity of nanocrystalline diamond films by dual-side thermoreflectance
Related Articles Coupled vibrational modes in multiple-filled skutterudites and the effects on lattice thermal conductivity reduction Appl. Phys. Lett. 102, 111905 (2013) Nanowire-filled polymer composites with ultrahigh thermal conductivity Appl. Phys. Lett. 102, 093117 (2013) Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations J. Chem. Phys...
متن کاملبهبود بازده تبدیل انرژی حالت جامد با استفاده از نانوساختارهای ترموالکتریک
Solid-state energy conversion technologies such as thermoelectric refrigeration and power generation require materials with low thermal conductivity yet high electrical conductivity and Seebeck coefficiency. Although semiconductors are the best thermoelectric materials, they rarely have the such features. Nanostructures such as superlattices, quantum wires, and quantum dots provide novel method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011